The classification of root systems

Maris Ozols

University of Waterloo
Department of C\&O
November 28, 2007

Definition of the root system

Definition

Let $\mathbb{E} \cong \mathbb{R}^{n}$ be a real vector space. A finite subset $R \subset \mathbb{E}$ is called root system if

Definition of the root system

Definition

Let $\mathbb{E} \cong \mathbb{R}^{n}$ be a real vector space. A finite subset $R \subset \mathbb{E}$ is called root system if

$$
\text { 1. } \operatorname{span} R=\mathbb{E}, 0 \notin R \text {, }
$$

Definition of the root system

Definition

Let $\mathbb{E} \cong \mathbb{R}^{n}$ be a real vector space. A finite subset $R \subset \mathbb{E}$ is called root system if

1. $\operatorname{span} R=\mathbb{E}, 0 \notin R$,
2. $\pm \alpha \in R$ are the only multiples of $\alpha \in R$,

Definition of the root system

Definition

Let $\mathbb{E} \cong \mathbb{R}^{n}$ be a real vector space. A finite subset $R \subset \mathbb{E}$ is called root system if

1. $\operatorname{span} R=\mathbb{E}, 0 \notin R$,
2. $\pm \alpha \in R$ are the only multiples of $\alpha \in R$,
3. R is invariant under reflections s_{α} in hyperplanes orthogonal to any $\alpha \in R$,

Definition of the root system

Definition

Let $\mathbb{E} \cong \mathbb{R}^{n}$ be a real vector space. A finite subset $R \subset \mathbb{E}$ is called root system if

1. $\operatorname{span} R=\mathbb{E}, 0 \notin R$,
2. $\pm \alpha \in R$ are the only multiples of $\alpha \in R$,
3. R is invariant under reflections s_{α} in hyperplanes orthogonal to any $\alpha \in R$,
4. if $\alpha, \beta \in R$, then $n_{\beta \alpha}=2 \frac{\langle\beta, \alpha\rangle}{\langle\alpha, \alpha\rangle} \in \mathbb{Z}$.

Definition of the root system

Definition

Let $\mathbb{E} \cong \mathbb{R}^{n}$ be a real vector space. A finite subset $R \subset \mathbb{E}$ is called root system if

1. $\operatorname{span} R=\mathbb{E}, 0 \notin R$,
2. $\pm \alpha \in R$ are the only multiples of $\alpha \in R$,
3. R is invariant under reflections s_{α} in hyperplanes orthogonal to any $\alpha \in R$,
4. if $\alpha, \beta \in R$, then $n_{\beta \alpha}=2 \frac{\langle\beta, \alpha\rangle}{\langle\alpha, \alpha\rangle} \in \mathbb{Z}$.

The elements of R are called roots.
The rank of the root system is the dimension of \mathbb{E}.

Restrictions

Projection

$$
\operatorname{proj}_{\alpha} \beta=\alpha \frac{\langle\beta, \alpha\rangle}{\langle\alpha, \alpha\rangle}=\frac{1}{2} n_{\beta \alpha} \alpha
$$

Restrictions

Projection

$$
\operatorname{proj}_{\alpha} \beta=\alpha \frac{\langle\beta, \alpha\rangle}{\langle\alpha, \alpha\rangle}=\frac{1}{2} n_{\beta \alpha} \alpha
$$

Angles

$$
\begin{gathered}
n_{\beta \alpha}=2 \frac{\langle\beta, \alpha\rangle}{\langle\alpha, \alpha\rangle}=2 \frac{\|\beta\|\|\alpha\| \cos \theta}{\|\alpha\|^{2}}=2 \frac{\|\beta\|}{\|\alpha\|} \cos \theta \in \mathbb{Z} \\
n_{\beta \alpha} \cdot n_{\alpha \beta}=4 \cos ^{2} \theta \in \mathbb{Z} \\
4 \cos ^{2} \theta \in\{0,1,2,3,4\}
\end{gathered}
$$

Geometry

Angles

$$
4 \cos ^{2} \theta \in\{0,1,2,3\}, \text { or } \cos \theta \in \pm\left\{0, \frac{1}{2}, \frac{\sqrt{2}}{2}, \frac{\sqrt{3}}{2}\right\}
$$

Examples in rank 2

Root system $A_{1} \times A_{1}$

(decomposable)

Examples in rank 2

Root system A_{2}

Examples in rank 2

Root system B_{2}

Examples in rank 2

Root system G_{2}

Positive roots and simple roots

Consider a vector d, such that $\forall \alpha \in R:\langle\alpha, d\rangle \neq 0$. Define $R^{+}(d)=\{\alpha \in R \mid\langle\alpha, d\rangle>0\}$. Then $R=R^{+}(d) \cup R^{-}(d)$, where $R^{-}(d)=-R^{+}(d)$.

Positive roots and simple roots

Consider a vector d, such that $\forall \alpha \in R:\langle\alpha, d\rangle \neq 0$. Define $R^{+}(d)=\{\alpha \in R \mid\langle\alpha, d\rangle>0\}$. Then $R=R^{+}(d) \cup R^{-}(d)$, where $R^{-}(d)=-R^{+}(d)$.

Definition
A root α is called positive if $\alpha \in R^{+}(d)$ and negative if $\alpha \in R^{-}(d)$.

Positive roots and simple roots

Consider a vector d, such that $\forall \alpha \in R:\langle\alpha, d\rangle \neq 0$. Define $R^{+}(d)=\{\alpha \in R \mid\langle\alpha, d\rangle>0\}$. Then $R=R^{+}(d) \cup R^{-}(d)$, where $R^{-}(d)=-R^{+}(d)$.

Definition
A root α is called positive if $\alpha \in R^{+}(d)$ and negative if $\alpha \in R^{-}(d)$.
Definition
A positive root $\alpha \in R^{+}(d)$ is called simple if it is not a sum of two other positive roots.

Positive roots and simple roots

Consider a vector d, such that $\forall \alpha \in R:\langle\alpha, d\rangle \neq 0$. Define $R^{+}(d)=\{\alpha \in R \mid\langle\alpha, d\rangle>0\}$. Then $R=R^{+}(d) \cup R^{-}(d)$, where $R^{-}(d)=-R^{+}(d)$.

Definition
A root α is called positive if $\alpha \in R^{+}(d)$ and negative if $\alpha \in R^{-}(d)$.
Definition
A positive root $\alpha \in R^{+}(d)$ is called simple if it is not a sum of two other positive roots.

Definition
The set of all simple roots of a root system R is called basis of R.

Properties of simple roots

Definition

The hyperplanes orthogonal to $\alpha \in R$ cut the space \mathbb{E} into open, connected regions called Weyl chambers.

Properties of simple roots

Definition

The hyperplanes orthogonal to $\alpha \in R$ cut the space \mathbb{E} into open, connected regions called Weyl chambers.

Lemma
There is a one-to-one correspondence between bases and Weyl chambers.

Properties of simple roots

Definition

The hyperplanes orthogonal to $\alpha \in R$ cut the space \mathbb{E} into open, connected regions called Weyl chambers.

Lemma

There is a one-to-one correspondence between bases and Weyl chambers.

Definition
The group generated by reflections s_{α} is called Weyl group.

Properties of simple roots

Definition

The hyperplanes orthogonal to $\alpha \in R$ cut the space \mathbb{E} into open, connected regions called Weyl chambers.

Lemma

There is a one-to-one correspondence between bases and Weyl chambers.

Definition
The group generated by reflections s_{α} is called Weyl group.

Lemma

Any two bases of a given root system $R \subset \mathbb{E}$ are equivalent under the action of the Weyl group.

Properties of simple roots

Definition

The hyperplanes orthogonal to $\alpha \in R$ cut the space \mathbb{E} into open, connected regions called Weyl chambers.

Lemma

There is a one-to-one correspondence between bases and Weyl chambers.

Definition
The group generated by reflections s_{α} is called Weyl group.

Lemma

Any two bases of a given root system $R \subset \mathbb{E}$ are equivalent under the action of the Weyl group.

Lemma
The root system R can be uniquely reconstructed from its basis.

Coxeter and Dynkin diagrams

Lemma
If α and β are distinct simple roots, then $\langle\alpha, \beta\rangle \leq 0$.

Coxeter and Dynkin diagrams

Lemma

If α and β are distinct simple roots, then $\langle\alpha, \beta\rangle \leq 0$.
Conclusion
Since $4 \cos ^{2} \theta \in\{0,1,2,3\}$, it means that $\theta \in\left\{\frac{\pi}{2}, \frac{2 \pi}{3}, \frac{3 \pi}{4}, \frac{5 \pi}{6}\right\}$.

Coxeter and Dynkin diagrams

Lemma

If α and β are distinct simple roots, then $\langle\alpha, \beta\rangle \leq 0$.
Conclusion
Since $4 \cos ^{2} \theta \in\{0,1,2,3\}$, it means that $\theta \in\left\{\frac{\pi}{2}, \frac{2 \pi}{3}, \frac{3 \pi}{4}, \frac{5 \pi}{6}\right\}$.
Definition
The Coxeter graph of a root system R is a graph that has one vertex for each simple root of R and every pair α, β of distinct vertices is connected by $n_{\alpha \beta} \cdot n_{\beta \alpha}=4 \cos ^{2} \theta \in\{0,1,2,3\}$ edges.

Coxeter and Dynkin diagrams

Lemma

If α and β are distinct simple roots, then $\langle\alpha, \beta\rangle \leq 0$.
Conclusion
Since $4 \cos ^{2} \theta \in\{0,1,2,3\}$, it means that $\theta \in\left\{\frac{\pi}{2}, \frac{2 \pi}{3}, \frac{3 \pi}{4}, \frac{5 \pi}{6}\right\}$.

Definition

The Coxeter graph of a root system R is a graph that has one vertex for each simple root of R and every pair α, β of distinct vertices is connected by $n_{\alpha \beta} \cdot n_{\beta \alpha}=4 \cos ^{2} \theta \in\{0,1,2,3\}$ edges.

Definition

The Dynkin diagram of a root system is its Coxeter graph with arrow attached to each double and triple edge pointing from longer root to shorter root.

Admissible diagrams

Definition

A set of n unit vectors $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \subset \mathbb{E}$ is called an admissible configuration if:

1. v_{i} 's are linearly independent and span \mathbb{E},
2. if $i \neq j$, then $\left\langle v_{i}, v_{j}\right\rangle \leq 0$,
3. and $4\left\langle v_{i}, v_{j}\right\rangle^{2}=4 \cos ^{2} \theta \in\{0,1,2,3\}$.

Admissible diagrams

Definition

A set of n unit vectors $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \subset \mathbb{E}$ is called an admissible configuration if:

1. v_{i} 's are linearly independent and span \mathbb{E},
2. if $i \neq j$, then $\left\langle v_{i}, v_{j}\right\rangle \leq 0$,
3. and $4\left\langle v_{i}, v_{j}\right\rangle^{2}=4 \cos ^{2} \theta \in\{0,1,2,3\}$.

Note
The set of normalized simple roots of any root system is an admissible configuration (they are linearly independent, span the whole space, and have specific angles between them).

Admissible diagrams

Definition

A set of n unit vectors $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \subset \mathbb{E}$ is called an admissible configuration if:

1. v_{i} 's are linearly independent and span \mathbb{E},
2. if $i \neq j$, then $\left\langle v_{i}, v_{j}\right\rangle \leq 0$,
3. and $4\left\langle v_{i}, v_{j}\right\rangle^{2}=4 \cos ^{2} \theta \in\{0,1,2,3\}$.

Note
The set of normalized simple roots of any root system is an admissible configuration (they are linearly independent, span the whole space, and have specific angles between them).

Definition

Coxeter graph of an admissible configuration is admissible diagram.

Irreducibility

Definition
If a root system is not decomposable, it is called irreducible.

Irreducibility

Definition
If a root system is not decomposable, it is called irreducible.
Lemma
The root system is irreducible if and only if its base is irreducible.

Irreducibility

Definition

If a root system is not decomposable, it is called irreducible.

Lemma

The root system is irreducible if and only if its base is irreducible.

Conclusion

It means, the set of simple roots of an irreducible root system can not be decomposed into mutually orthogonal subsets. Hence the corresponding Coxeter graph will be connected. Thus, to classify all irreducible root systems, it is enough to consider only connected admissible diagrams.

Classification theorem

Theorem
The Dynkin diagram of an irreducible root system is one of:

Step 1

Claim: Any subdiagram of an admissible diagram is also admissible.

Step 1

Claim: Any subdiagram of an admissible diagram is also admissible.

If the set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is an admissible configuration, then clearly any subset of it is also an admissible configuration (in the space it spans). The same holds for admissible diagrams.

Step 2

Claim: A connected admissible diagram is a tree.

Step 2

Claim: A connected admissible diagram is a tree.

Define $v=\sum_{i=1}^{n} v_{i}(v \neq 0)$. Then

$$
0<\langle v, v\rangle=\sum_{i=1}^{n}\left\langle v_{i}, v_{i}\right\rangle+\sum_{i<j} 2\left\langle v_{i}, v_{j}\right\rangle=n+\sum_{i<j} 2\left\langle v_{i}, v_{j}\right\rangle .
$$

If v_{i} and v_{j} are connected, then

$$
2\left\langle v_{i}, v_{j}\right\rangle \in\{-1,-\sqrt{2},-\sqrt{3}\}
$$

In particular, $2\left\langle v_{i}, v_{j}\right\rangle \leq-1$. It means, the number of terms in the sum and hence the number of edges can not exceed $n-1$.

Step 3

Claim: No more than three edges (counting multiplicities) can originate from the same vertex.

Step 3

Claim: No more than three edges (counting multiplicities) can originate from the same vertex.

Let $v_{1}, v_{2}, \ldots, v_{k}$ be connected to c, then $\left\langle v_{i}, v_{j}\right\rangle=\delta_{i j}$. Let $v_{0} \neq 0$ be the normalized projection of c to the orthogonal complement of v_{i} 's. Then $\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{k}\right\}$ is an orthonormal basis and:

$$
c=\sum_{i=0}^{k}\left\langle c, v_{i}\right\rangle v_{i}
$$

Since $\langle c, c\rangle=\sum_{i=0}^{k}\left\langle c, v_{i}\right\rangle^{2}=1$ and $\left\langle c, v_{0}\right\rangle \neq 0$, then

$$
\sum_{i=1}^{k} 4\left\langle c, v_{i}\right\rangle^{2}<4
$$

where $4\left\langle c, v_{i}\right\rangle^{2}$ is the number of edges between c and v_{i}.

Step 4

Claim: The only connected admissible diagram containing a triple edge is
G_{2}

Step 4

Claim: The only connected admissible diagram containing a triple edge is

This follows from the previous step. From now on we will consider only diagrams with single and double edges.

Step 5

Claim: Any simple chain $v_{1}, v_{2}, \ldots, v_{k}$ can be replaced by a single vector $v=\sum_{i=1}^{k} v_{i}$.

Step 5

Claim: Any simple chain $v_{1}, v_{2}, \ldots, v_{k}$ can be replaced by a single vector $v=\sum_{i=1}^{k} v_{i}$.

Vector v is a unit vector, since $2\left\langle v_{i}, v_{j}\right\rangle=-\delta_{i+1, j}$ and therefore $\langle v, v\rangle=k+\sum_{i<j} 2\left\langle v_{i}, v_{j}\right\rangle=k+\sum_{i=1}^{k-1} 2\left\langle v_{i}, v_{i+1}\right\rangle=k-(k-1)=1$.

If u is not in the chain, then it can be connected to at most one vertex in the chain (let it be v_{j}). Then

$$
\langle u, v\rangle=\sum_{i=1}^{k}\left\langle u, v_{i}\right\rangle=\left\langle u, v_{j}\right\rangle
$$

and u remains connected to v in the same way. Therefore the obtained diagram is also admissible and connected.

Step 6

Claim: A connected admissible diagram has none of the following subdiagrams:

Step 6

Claim: A connected admissible diagram has none of the following subdiagrams:

Conclusion

It means that a connected admissible diagram can contain at most one double edge and at most one branching, but not both of them simultaneously.

Step 7

Claim: There are only three types of connected admissible diagrams:
T1: a simple chain,
T2: a diagram with a double edge,
T3: a diagram with branching.
T1

T2

T3

Step 8

Claim: The admissible diagram of type T1 corresponds to the Dynkin diagram A_{n}, where $n \geq 1$.

($\mathrm{n} \leq 1$)

Step 9

Claim: The admissible diagrams of type $T 2$ are F_{4}, B_{n}, and C_{n}.

Step 9

Claim: The admissible diagrams of type $T 2$ are F_{4}, B_{n}, and C_{n}.

Define $u=\sum_{i=1}^{p} i \cdot u_{i}$. Since $2\left\langle u_{i}, u_{i+1}\right\rangle=-1$ for $1 \leq i \leq p-1$,

$$
\begin{array}{r}
\langle u, u\rangle=\sum_{i=1}^{p} i^{2}\left\langle u_{i}, u_{i}\right\rangle+\sum_{i<j} i j \cdot 2\left\langle u_{i}, u_{j}\right\rangle=\sum_{i=1}^{p} i^{2}-\sum_{i=1}^{p-1} i(i+1) \\
=p^{2}-\sum_{i=1}^{p-1} i=p^{2}-\frac{p(p-1)}{2}=\frac{p(p+1)}{2}
\end{array}
$$

Similarly, $v=\sum_{j=1}^{q} j \cdot v_{j}$ and $\langle v, v\rangle=q(q+1) / 2$. From $\langle u, v\rangle=p q\left\langle u_{p}, v_{q}\right\rangle$ and $4\left\langle u_{p}, v_{q}\right\rangle^{2}=2$ we get $\langle u, v\rangle^{2}=p^{2} q^{2} / 2$. From Cauchy-Schwarz inequality $\langle u, v\rangle^{2}<\langle u, u\rangle\langle v, v\rangle$ we get

$$
\frac{p^{2} q^{2}}{2}<\frac{p(p+1)}{2} \cdot \frac{q(q+1)}{2}
$$

Step 10 (continued)

Since $p, q \in \mathbb{Z}_{+}$, we get $2 p q<(p+1)(q+1)$ or simply $(p-1)(q-1)<2$.

Step 10 (continued)

Since $p, q \in \mathbb{Z}_{+}$, we get $2 p q<(p+1)(q+1)$ or simply $(p-1)(q-1)<2$.
$p=q=2$

Step 10 (continued)

Since $p, q \in \mathbb{Z}_{+}$, we get $2 p q<(p+1)(q+1)$ or simply $(p-1)(q-1)<2$.
$p=q=2$

$p=1$ and q is arbitrary (or vice versa)

Step 10

Claim: The admissible diagrams of type $T 3$ are $D_{n}, E_{6}, E_{7}, E_{8}$.

Step 10

Claim: The admissible diagrams of type $T 3$ are $D_{n}, E_{6}, E_{7}, E_{8}$.

Define $u=\sum_{i=1}^{p-1} i \cdot u_{i}, v=\sum_{j=1}^{q-1} j \cdot v_{j}$, and $w=\sum_{k=1}^{r-1} k \cdot w_{k}$. Let u^{\prime}, v^{\prime}, and w^{\prime} be the corresponding unit vectors. Then

$$
1=\langle c, c\rangle>\left\langle c, u^{\prime}\right\rangle^{2}+\left\langle c, v^{\prime}\right\rangle^{2}+\left\langle c, w^{\prime}\right\rangle^{2}
$$

Since $\left\langle c, u_{i}\right\rangle^{2}=0$ unless $i=p-1$ and $4\left\langle c, u_{p-1}\right\rangle^{2}=1$, we have

$$
\langle c, u\rangle^{2}=\sum_{i=1}^{p-1} i^{2}\left\langle c, u_{i}\right\rangle^{2}=(p-1)^{2}\left\langle c, u_{p-1}\right\rangle^{2}=\frac{(p-1)^{2}}{4} .
$$

We already know that $\langle u, u\rangle=p(p-1) / 2$, therefore

$$
\left\langle c, u^{\prime}\right\rangle^{2}=\frac{\langle c, u\rangle^{2}}{\langle u, u\rangle}=\frac{(p-1)^{2}}{4} \cdot \frac{2}{p(p-1)}=\frac{p-1}{2 p}=\frac{1}{2}\left(1-\frac{1}{p}\right) .
$$

Step 10 (Continued)

If we do the same for v and w, we get
$2>(1-1 / p)+(1-1 / q)+(1-1 / r)$ or simply

$$
\frac{1}{p}+\frac{1}{q}+\frac{1}{r}>1, \quad p, q, r \geq 2
$$

Step 10 (Continued)

If we do the same for v and w, we get
$2>(1-1 / p)+(1-1 / q)+(1-1 / r)$ or simply

$$
\frac{1}{p}+\frac{1}{q}+\frac{1}{r}>1, \quad p, q, r \geq 2
$$

We can assume that $p \geq q \geq r \geq 2$. There is no solution with $r \geq 3$, since then the sum can not exceed 1 . Therefore we have to take $r=2$. If we take $q=2$ as well, then any p suits, but for $q=3$ we have $1 / q+1 / r=5 / 6$ and we can take only $p<6$. There are no solutions with $q \geq 4$, because then the sum is at most 1 .

Step 10 (Continued)

If we do the same for v and w, we get
$2>(1-1 / p)+(1-1 / q)+(1-1 / r)$ or simply

$$
\frac{1}{p}+\frac{1}{q}+\frac{1}{r}>1, \quad p, q, r \geq 2
$$

We can assume that $p \geq q \geq r \geq 2$. There is no solution with $r \geq 3$, since then the sum can not exceed 1 . Therefore we have to take $r=2$. If we take $q=2$ as well, then any p suits, but for $q=3$ we have $1 / q+1 / r=5 / 6$ and we can take only $p<6$. There are no solutions with $q \geq 4$, because then the sum is at most 1 .

p	q	r	Dynkin diagram
any	2	2	D_{n}
3	3	2	E_{6}
4	3	2	E_{7}
5	3	2	E_{8}

End of proof

Q.E.D.

End of proof

Q.E.D.

Theorem
For each Dynkin diagram we have found there indeed is an irreducible root system having the given diagram.

