The classification of root systems

Maris Ozols

University of Waterloo Department of C&O

November 28, 2007

Definition

Let $\mathbb{E}\cong\mathbb{R}^n$ be a real vector space. A finite subset $R\subset\mathbb{E}$ is called *root system* if

Definition

Let $\mathbb{E}\cong\mathbb{R}^n$ be a real vector space. A finite subset $R\subset\mathbb{E}$ is called *root system* if

1. span $R = \mathbb{E}$, $0 \notin R$,

Definition

Let $\mathbb{E} \cong \mathbb{R}^n$ be a real vector space. A finite subset $R \subset \mathbb{E}$ is called *root system* if

- 1. span $R = \mathbb{E}$, $0 \notin R$,
- 2. $\pm \alpha \in R$ are the only multiples of $\alpha \in R$,

Definition

Let $\mathbb{E} \cong \mathbb{R}^n$ be a real vector space. A finite subset $R \subset \mathbb{E}$ is called *root system* if

- 1. span $R = \mathbb{E}$, $0 \notin R$,
- 2. $\pm \alpha \in R$ are the only multiples of $\alpha \in R$,
- 3. R is invariant under reflections s_{α} in hyperplanes orthogonal to any $\alpha \in R$,

Definition

Let $\mathbb{E} \cong \mathbb{R}^n$ be a real vector space. A finite subset $R \subset \mathbb{E}$ is called *root system* if

- 1. span $R = \mathbb{E}$, $0 \notin R$,
- 2. $\pm \alpha \in R$ are the only multiples of $\alpha \in R$,
- 3. R is invariant under reflections s_{α} in hyperplanes orthogonal to any $\alpha \in R$,
- 4. if $\alpha, \beta \in R$, then $n_{\beta\alpha} = 2 \frac{\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z}$.

Definition

Let $\mathbb{E} \cong \mathbb{R}^n$ be a real vector space. A finite subset $R \subset \mathbb{E}$ is called *root system* if

- 1. span $R = \mathbb{E}$, $0 \notin R$,
- 2. $\pm \alpha \in R$ are the only multiples of $\alpha \in R$,
- 3. R is invariant under reflections s_{α} in hyperplanes orthogonal to any $\alpha \in R$,
- 4. if $\alpha, \beta \in R$, then $n_{\beta\alpha} = 2 \frac{\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z}$.

The elements of R are called roots.

The *rank* of the root system is the dimension of \mathbb{E} .

Restrictions

Projection

$$\operatorname{proj}_{lpha}eta=lpharac{\langleeta,lpha
angle}{\langlelpha,lpha
angle}=rac{1}{2}\emph{n}_{etalpha}lpha$$

Restrictions

Projection

$$\operatorname{proj}_{lpha}eta=lpharac{\langleeta,lpha
angle}{\langlelpha,lpha
angle}=rac{1}{2}\emph{n}_{etalpha}lpha$$

Angles

$$\begin{split} n_{\beta\alpha} &= 2\frac{\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle} = 2\frac{\|\beta\| \|\alpha\| \cos \theta}{\|\alpha\|^2} = 2\frac{\|\beta\|}{\|\alpha\|} \cos \theta \in \mathbb{Z} \\ n_{\beta\alpha} \cdot n_{\alpha\beta} &= 4\cos^2 \theta \in \mathbb{Z} \end{split}$$
$$4\cos^2 \theta \in \{0, 1, 2, 3, 4\}$$

Geometry

Angles

$$4\cos^2\theta \in \left\{0, 1, 2, 3\right\}, \operatorname{or} \cos\theta \in \pm \left\{0, \frac{1}{2}, \frac{\sqrt{2}}{2}, \frac{\sqrt{3}}{2}\right\}$$

Root system $A_1 \times A_1$

(decomposable)

Root system A_2

Root system B_2

Root system G_2

Consider a vector d, such that $\forall \alpha \in R : \langle \alpha, d \rangle \neq 0$. Define $R^+(d) = \{\alpha \in R | \langle \alpha, d \rangle > 0\}$. Then $R = R^+(d) \cup R^-(d)$, where $R^-(d) = -R^+(d)$.

Consider a vector d, such that $\forall \alpha \in R : \langle \alpha, d \rangle \neq 0$. Define $R^+(d) = \{\alpha \in R | \langle \alpha, d \rangle > 0\}$. Then $R = R^+(d) \cup R^-(d)$, where $R^-(d) = -R^+(d)$.

Definition

A root α is called *positive* if $\alpha \in R^+(d)$ and *negative* if $\alpha \in R^-(d)$.

Consider a vector d, such that $\forall \alpha \in R : \langle \alpha, d \rangle \neq 0$. Define $R^+(d) = \{\alpha \in R | \langle \alpha, d \rangle > 0\}$. Then $R = R^+(d) \cup R^-(d)$, where $R^-(d) = -R^+(d)$.

Definition

A root α is called *positive* if $\alpha \in R^+(d)$ and *negative* if $\alpha \in R^-(d)$.

Definition

A positive root $\alpha \in R^+(d)$ is called *simple* if it is not a sum of two other positive roots.

Consider a vector d, such that $\forall \alpha \in R : \langle \alpha, d \rangle \neq 0$. Define $R^+(d) = \{\alpha \in R | \langle \alpha, d \rangle > 0\}$. Then $R = R^+(d) \cup R^-(d)$, where $R^-(d) = -R^+(d)$.

Definition

A root α is called *positive* if $\alpha \in R^+(d)$ and *negative* if $\alpha \in R^-(d)$.

Definition

A positive root $\alpha \in R^+(d)$ is called *simple* if it is not a sum of two other positive roots.

Definition

The set of all simple roots of a root system R is called *basis* of R.

Definition

The hyperplanes orthogonal to $\alpha \in R$ cut the space $\mathbb E$ into open, connected regions called *Weyl chambers*.

Definition

The hyperplanes orthogonal to $\alpha \in R$ cut the space $\mathbb E$ into open, connected regions called *Weyl chambers*.

Lemma

There is a one-to-one correspondence between bases and Weyl chambers.

Definition

The hyperplanes orthogonal to $\alpha \in R$ cut the space $\mathbb E$ into open, connected regions called *Weyl chambers*.

Lemma

There is a one-to-one correspondence between bases and Weyl chambers.

Definition

The group generated by reflections s_{α} is called *Weyl group*.

Definition

The hyperplanes orthogonal to $\alpha \in R$ cut the space \mathbb{E} into open, connected regions called *Weyl chambers*.

Lemma

There is a one-to-one correspondence between bases and Weyl chambers.

Definition

The group generated by reflections s_{α} is called *Weyl group*.

Lemma

Any two bases of a given root system $R \subset \mathbb{E}$ are equivalent under the action of the Weyl group.

Definition

The hyperplanes orthogonal to $\alpha \in R$ cut the space \mathbb{E} into open, connected regions called *Weyl chambers*.

Lemma

There is a one-to-one correspondence between bases and Weyl chambers.

Definition

The group generated by reflections s_{α} is called *Weyl group*.

Lemma

Any two bases of a given root system $R \subset \mathbb{E}$ are equivalent under the action of the Weyl group.

Lemma

The root system R can be uniquely reconstructed from its basis.

Lemma

If α and β are distinct simple roots, then $\langle \alpha, \beta \rangle \leq 0$.

Lemma

If α and β are distinct simple roots, then $\langle \alpha, \beta \rangle \leq 0$.

Conclusion

Since $4\cos^2\theta\in\{0,1,2,3\}$, it means that $\theta\in\left\{\frac{\pi}{2},\frac{2\pi}{3},\frac{3\pi}{4},\frac{5\pi}{6}\right\}$.

Lemma

If α and β are distinct simple roots, then $\langle \alpha, \beta \rangle \leq 0$.

Conclusion

Since $4\cos^2\theta\in\{0,1,2,3\}$, it means that $\theta\in\left\{\frac{\pi}{2},\frac{2\pi}{3},\frac{3\pi}{4},\frac{5\pi}{6}\right\}$.

Definition

The *Coxeter graph* of a root system R is a graph that has one vertex for each simple root of R and every pair α , β of distinct vertices is connected by $n_{\alpha\beta} \cdot n_{\beta\alpha} = 4\cos^2\theta \in \{0,1,2,3\}$ edges.

Lemma

If α and β are distinct simple roots, then $\langle \alpha, \beta \rangle \leq 0$.

Conclusion

Since $4\cos^2\theta\in\{0,1,2,3\}$, it means that $\theta\in\left\{\frac{\pi}{2},\frac{2\pi}{3},\frac{3\pi}{4},\frac{5\pi}{6}\right\}$.

Definition

The *Coxeter graph* of a root system R is a graph that has one vertex for each simple root of R and every pair α , β of distinct vertices is connected by $n_{\alpha\beta} \cdot n_{\beta\alpha} = 4\cos^2\theta \in \{0,1,2,3\}$ edges.

Definition

The *Dynkin diagram* of a root system is its Coxeter graph with arrow attached to each double and triple edge pointing from longer root to shorter root.

Admissible diagrams

Definition

A set of *n* unit vectors $\{v_1, v_2, \dots, v_n\} \subset \mathbb{E}$ is called an *admissible* configuration if:

- 1. v_i 's are linearly independent and span \mathbb{E} ,
- 2. if $i \neq j$, then $\langle v_i, v_j \rangle \leq 0$,
- 3. and $4 \langle v_i, v_j \rangle^2 = 4 \cos^2 \theta \in \{0, 1, 2, 3\}.$

Admissible diagrams

Definition

A set of *n* unit vectors $\{v_1, v_2, \dots, v_n\} \subset \mathbb{E}$ is called an *admissible* configuration if:

- 1. v_i 's are linearly independent and span \mathbb{E} ,
- 2. if $i \neq j$, then $\langle v_i, v_j \rangle \leq 0$,
- 3. and $4 \langle v_i, v_j \rangle^2 = 4 \cos^2 \theta \in \{0, 1, 2, 3\}.$

Note

The set of normalized simple roots of any root system is an admissible configuration (they are linearly independent, span the whole space, and have specific angles between them).

Admissible diagrams

Definition

A set of *n* unit vectors $\{v_1, v_2, \dots, v_n\} \subset \mathbb{E}$ is called an *admissible* configuration if:

- 1. v_i 's are linearly independent and span \mathbb{E} ,
- 2. if $i \neq j$, then $\langle v_i, v_j \rangle \leq 0$,
- 3. and $4 \langle v_i, v_j \rangle^2 = 4 \cos^2 \theta \in \{0, 1, 2, 3\}.$

Note

The set of normalized simple roots of any root system is an admissible configuration (they are linearly independent, span the whole space, and have specific angles between them).

Definition

Coxeter graph of an admissible configuration is admissible diagram.

Irreducibility

Definition

If a root system is not decomposable, it is called *irreducible*.

Irreducibility

Definition

If a root system is not decomposable, it is called *irreducible*.

Lemma

The root system is irreducible if and only if its base is irreducible.

Irreducibility

Definition

If a root system is not decomposable, it is called *irreducible*.

Lemma

The root system is irreducible if and only if its base is irreducible.

Conclusion

It means, the set of simple roots of an irreducible root system can not be decomposed into mutually orthogonal subsets. Hence the corresponding Coxeter graph will be *connected*. Thus, to classify all irreducible root systems, it is enough to consider only connected admissible diagrams.

Classification theorem

Theorem

The Dynkin diagram of an irreducible root system is one of:

Step 1

Claim: Any subdiagram of an admissible diagram is also admissible.

Step 1

Claim: Any subdiagram of an admissible diagram is also admissible.

If the set $\{v_1, v_2, \ldots, v_n\}$ is an admissible configuration, then clearly any subset of it is also an admissible configuration (in the space it spans). The same holds for admissible diagrams.

Claim: A connected admissible diagram is a tree.

Claim: A connected admissible diagram is a tree.

Define $v = \sum_{i=1}^{n} v_i$ ($v \neq 0$). Then

$$0 < \langle v, v \rangle = \sum_{i=1}^{n} \langle v_i, v_i \rangle + \sum_{i < j} 2 \langle v_i, v_j \rangle = n + \sum_{i < j} 2 \langle v_i, v_j \rangle.$$

If v_i and v_j are connected, then

$$2\langle v_i, v_j \rangle \in \left\{-1, -\sqrt{2}, -\sqrt{3}\right\}$$

In particular, $2\langle v_i, v_j \rangle \leq -1$. It means, the number of terms in the sum and hence the number of edges can not exceed n-1.

Claim: No more than three edges (counting multiplicities) can originate from the same vertex.

Claim: No more than three edges (counting multiplicities) can originate from the same vertex.

Let v_1, v_2, \ldots, v_k be connected to c, then $\langle v_i, v_j \rangle = \delta_{ij}$. Let $v_0 \neq 0$ be the normalized projection of c to the orthogonal complement of v_i 's. Then $\{v_0, v_1, v_2, \ldots, v_k\}$ is an orthonormal basis and:

$$c=\sum_{i=0}^{\kappa}\langle c,v_i\rangle\,v_i.$$

Since $\langle c, c \rangle = \sum_{i=0}^{k} \langle c, v_i \rangle^2 = 1$ and $\langle c, v_0 \rangle \neq 0$, then

$$\sum_{i=1}^{k} 4 \langle c, v_i \rangle^2 < 4,$$

where $4\langle c, v_i \rangle^2$ is the number of edges between c and v_i .

Claim: The only connected admissible diagram containing a triple edge is

Claim: The only connected admissible diagram containing a triple edge is

This follows from the previous step. From now on we will consider only diagrams with single and double edges.

Claim: Any simple chain $v_1, v_2, ..., v_k$ can be replaced by a single vector $v = \sum_{i=1}^k v_i$.

Claim: Any simple chain $v_1, v_2, ..., v_k$ can be replaced by a single vector $v = \sum_{i=1}^k v_i$.

Vector v is a unit vector, since $2\langle v_i, v_j \rangle = -\delta_{i+1,j}$ and therefore

$$\langle v, v \rangle = k + \sum_{i < j} 2 \langle v_i, v_j \rangle = k + \sum_{i=1}^{k-1} 2 \langle v_i, v_{i+1} \rangle = k - (k-1) = 1.$$

If u is not in the chain, then it can be connected to at most one vertex in the chain (let it be v_i). Then

$$\langle u, v \rangle = \sum_{i=1}^{k} \langle u, v_i \rangle = \langle u, v_j \rangle$$

and u remains connected to v in the same way. Therefore the obtained diagram is also admissible and connected.

Claim: A connected admissible diagram has none of the following subdiagrams:

Claim: A connected admissible diagram has none of the following subdiagrams:

Conclusion

It means that a connected admissible diagram can contain at most one double edge and at most one branching, but not both of them simultaneously.

Claim: There are only three types of connected admissible diagrams:

T1: a simple chain,

T2: a diagram with a double edge,

T3: a diagram with branching.

Claim: The admissible diagram of type T1 corresponds to the Dynkin diagram A_n , where $n \ge 1$.

$$A_n \bigcirc ---- \bigcirc ---\bigcirc$$

$$(n \leq 1)$$

Claim: The admissible diagrams of type T2 are F_4 , B_n , and C_n .

Claim: The admissible diagrams of type T2 are F_4 , B_n , and C_n .

Define $u = \sum_{i=1}^{p} i \cdot u_i$. Since $2 \langle u_i, u_{i+1} \rangle = -1$ for $1 \leq i \leq p-1$,

$$\langle u, u \rangle = \sum_{i=1}^{p} i^2 \langle u_i, u_i \rangle + \sum_{i < j} ij \cdot 2 \langle u_i, u_j \rangle = \sum_{i=1}^{p} i^2 - \sum_{i=1}^{p-1} i(i+1)$$

= $p^2 - \sum_{i=1}^{p-1} i = p^2 - \frac{p(p-1)}{2} = \frac{p(p+1)}{2}$.

Similarly, $v = \sum_{j=1}^q j \cdot v_j$ and $\langle v, v \rangle = q(q+1)/2$. From $\langle u, v \rangle = pq \langle u_p, v_q \rangle$ and $4 \langle u_p, v_q \rangle^2 = 2$ we get $\langle u, v \rangle^2 = p^2 q^2/2$. From Cauchy-Schwarz inequality $\langle u, v \rangle^2 < \langle u, u \rangle \langle v, v \rangle$ we get

$$\frac{p^2q^2}{2}<\frac{p(p+1)}{2}\cdot\frac{q(q+1)}{2}.$$

Step 10 (continued)

Since $p, q \in \mathbb{Z}_+$, we get 2pq < (p+1)(q+1) or simply (p-1)(q-1) < 2.

Step 10 (continued)

Since
$$p, q \in \mathbb{Z}_+$$
, we get $2pq < (p+1)(q+1)$ or simply $(p-1)(q-1) < 2$.

$$p = q = 2$$

$$F_4 \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc$$

Step 10 (continued)

Since
$$p, q \in \mathbb{Z}_+$$
, we get $2pq < (p+1)(q+1)$ or simply $(p-1)(q-1) < 2$.

$$p = q = 2$$

p = 1 and q is arbitrary (or vice versa)

Claim: The admissible diagrams of type T3 are D_n , E_6 , E_7 , E_8 .

Claim: The admissible diagrams of type T3 are D_n , E_6 , E_7 , E_8 .

Define $u = \sum_{i=1}^{p-1} i \cdot u_i$, $v = \sum_{j=1}^{q-1} j \cdot v_j$, and $w = \sum_{k=1}^{r-1} k \cdot w_k$. Let u', v', and w' be the corresponding unit vectors. Then

$$1 = \langle c, c \rangle > \langle c, u' \rangle^2 + \langle c, v' \rangle^2 + \langle c, w' \rangle^2.$$

Since $\langle c, u_i \rangle^2 = 0$ unless i = p - 1 and $4 \langle c, u_{p-1} \rangle^2 = 1$, we have

$$\langle c, u \rangle^2 = \sum_{i=1}^{p-1} i^2 \langle c, u_i \rangle^2 = (p-1)^2 \langle c, u_{p-1} \rangle^2 = \frac{(p-1)^2}{4}.$$

We already know that $\langle u, u \rangle = p(p-1)/2$, therefore

$$\left\langle c,u'\right\rangle^2=\frac{\left\langle c,u\right\rangle^2}{\left\langle u,u\right\rangle}=\frac{(p-1)^2}{4}\cdot\frac{2}{p(p-1)}=\frac{p-1}{2p}=\frac{1}{2}\left(1-\frac{1}{p}\right).$$

Step 10 (Continued)

If we do the same for
$$v$$
 and w , we get
$$2>\left(1-1/p\right)+\left(1-1/q\right)+\left(1-1/r\right) \text{ or simply}$$

$$\frac{1}{p}+\frac{1}{q}+\frac{1}{r}>1, \quad p,q,r\geq 2.$$

Step 10 (Continued)

If we do the same for v and w, we get 2 > (1 - 1/p) + (1 - 1/q) + (1 - 1/r) or simply $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} > 1, \quad p, q, r \ge 2.$

We can assume that $p \geq q \geq r \geq 2$. There is no solution with $r \geq 3$, since then the sum can not exceed 1. Therefore we have to take r=2. If we take q=2 as well, then any p suits, but for q=3 we have 1/q+1/r=5/6 and we can take only p<6. There are no solutions with $q\geq 4$, because then the sum is at most 1.

Step 10 (Continued)

If we do the same for v and w, we get 2 > (1 - 1/p) + (1 - 1/q) + (1 - 1/r) or simply $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} > 1, \quad p, q, r \ge 2.$

We can assume that $p \geq q \geq r \geq 2$. There is no solution with $r \geq 3$, since then the sum can not exceed 1. Therefore we have to take r=2. If we take q=2 as well, then any p suits, but for q=3 we have 1/q+1/r=5/6 and we can take only p<6. There are no solutions with $q\geq 4$, because then the sum is at most 1.

p	q	r	Dynkin diagram
any	2	2	$\overline{D_n}$
3	3	2	E_6
4	3	2	E_7
5	3	2	E_8

End of proof

Q.E.D.

End of proof

Q.E.D.

Theorem

For each Dynkin diagram we have found there indeed is an irreducible root system having the given diagram.