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Definition of the root system

Definition
Let E ∼= Rn be a real vector space. A finite subset R ⊂ E is called
root system if

1. span R = E, 0 /∈ R,

2. ±α ∈ R are the only multiples of α ∈ R,

3. R is invariant under reflections sα in hyperplanes orthogonal
to any α ∈ R,

4. if α, β ∈ R, then nβα = 2 〈β,α〉〈α,α〉 ∈ Z.

The elements of R are called roots.
The rank of the root system is the dimension of E.
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Restrictions

Projection

projα β = α
〈β, α〉
〈α, α〉

=
1

2
nβαα

Angles

nβα = 2
〈β, α〉
〈α, α〉

= 2
‖β‖ ‖α‖ cos θ

‖α‖2
= 2
‖β‖
‖α‖

cos θ ∈ Z

nβα · nαβ = 4 cos2 θ ∈ Z

4 cos2 θ ∈ {0, 1, 2, 3, 4}
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Geometry

Angles

4 cos2 θ ∈ {0, 1, 2, 3} , or cos θ ∈ ±

{
0,

1

2
,

√
2

2
,

√
3

2
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Examples in rank 2

Root system A1 × A1

(decomposable)



Examples in rank 2

Root system A2



Examples in rank 2

Root system B2



Examples in rank 2

Root system G2



Positive roots and simple roots

Consider a vector d , such that ∀α ∈ R : 〈α, d〉 6= 0. Define
R+(d) = {α ∈ R| 〈α, d〉 > 0}. Then R = R+(d) ∪ R−(d), where
R−(d) = −R+(d).

Definition
A root α is called positive if α ∈ R+(d) and negative if α ∈ R−(d).

Definition
A positive root α ∈ R+(d) is called simple if it is not a sum of two
other positive roots.

Definition
The set of all simple roots of a root system R is called basis of R.
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Properties of simple roots

Definition
The hyperplanes orthogonal to α ∈ R cut the space E into open,
connected regions called Weyl chambers.

Lemma
There is a one-to-one correspondence between bases and Weyl
chambers.

Definition
The group generated by reflections sα is called Weyl group.

Lemma
Any two bases of a given root system R ⊂ E are equivalent under
the action of the Weyl group.

Lemma
The root system R can be uniquely reconstructed from its basis.
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Coxeter and Dynkin diagrams

Lemma
If α and β are distinct simple roots, then 〈α, β〉 ≤ 0.

Conclusion
Since 4 cos2 θ ∈ {0, 1, 2, 3}, it means that θ ∈

{
π
2 ,

2π
3 ,

3π
4 ,

5π
6

}
.

Definition
The Coxeter graph of a root system R is a graph that has one
vertex for each simple root of R and every pair α, β of distinct
vertices is connected by nαβ · nβα = 4 cos2 θ ∈ {0, 1, 2, 3} edges.

Definition
The Dynkin diagram of a root system is its Coxeter graph with
arrow attached to each double and triple edge pointing from longer
root to shorter root.
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Admissible diagrams

Definition
A set of n unit vectors {v1, v2, . . . , vn} ⊂ E is called an admissible
configuration if:

1. vi ’s are linearly independent and span E,

2. if i 6= j , then 〈vi , vj〉 ≤ 0,

3. and 4 〈vi , vj〉2 = 4 cos2 θ ∈ {0, 1, 2, 3}.

Note
The set of normalized simple roots of any root system is an
admissible configuration (they are linearly independent, span the
whole space, and have specific angles between them).

Definition
Coxeter graph of an admissible configuration is admissible diagram.
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Irreducibility

Definition
If a root system is not decomposable, it is called irreducible.

Lemma
The root system is irreducible if and only if its base is irreducible.

Conclusion
It means, the set of simple roots of an irreducible root system can
not be decomposed into mutually orthogonal subsets. Hence the
corresponding Coxeter graph will be connected. Thus, to classify
all irreducible root systems, it is enough to consider only connected
admissible diagrams.
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Classification theorem

Theorem
The Dynkin diagram of an irreducible root system is one of:



Step 1

Claim: Any subdiagram of an admissible diagram is also
admissible.

If the set {v1, v2, . . . , vn} is an admissible configuration, then
clearly any subset of it is also an admissible configuration (in the
space it spans). The same holds for admissible diagrams.
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Step 2

Claim: A connected admissible diagram is a tree.

Define v =
∑n

i=1 vi (v 6= 0). Then

0 < 〈v , v〉 =
n∑

i=1

〈vi , vi 〉+
∑
i<j

2 〈vi , vj〉 = n +
∑
i<j

2 〈vi , vj〉 .

If vi and vj are connected, then

2 〈vi , vj〉 ∈
{
−1,−

√
2,−
√

3
}

In particular, 2 〈vi , vj〉 ≤ −1. It means, the number of terms in the
sum and hence the number of edges can not exceed n − 1.
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Step 3

Claim: No more than three edges (counting multiplicities) can
originate from the same vertex.

Let v1, v2, . . . , vk be connected to c, then 〈vi , vj〉 = δij . Let v0 6= 0
be the normalized projection of c to the orthogonal complement of
vi ’s. Then {v0, v1, v2, . . . , vk} is an orthonormal basis and:

c =
k∑

i=0

〈c , vi 〉 vi .

Since 〈c , c〉 =
∑k

i=0 〈c , vi 〉2 = 1 and 〈c, v0〉 6= 0, then

k∑
i=1

4 〈c , vi 〉2 < 4,

where 4 〈c , vi 〉2 is the number of edges between c and vi .
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Step 4

Claim: The only connected admissible diagram containing a triple
edge is

This follows from the previous step. From now on we will consider
only diagrams with single and double edges.
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Step 5

Claim: Any simple chain v1, v2, . . . , vk can be replaced by a single
vector v =

∑k
i=1 vi .

Vector v is a unit vector, since 2 〈vi , vj〉 = −δi+1,j and therefore

〈v , v〉 = k +
∑
i<j

2 〈vi , vj〉 = k +
k−1∑
i=1

2 〈vi , vi+1〉 = k − (k − 1) = 1.

If u is not in the chain, then it can be connected to at most one
vertex in the chain (let it be vj). Then

〈u, v〉 =
k∑

i=1

〈u, vi 〉 = 〈u, vj〉

and u remains connected to v in the same way. Therefore the
obtained diagram is also admissible and connected.
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Step 6
Claim: A connected admissible diagram has none of the following
subdiagrams:

Conclusion
It means that a connected admissible diagram can contain at most
one double edge and at most one branching, but not both of them
simultaneously.
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Step 7
Claim: There are only three types of connected admissible
diagrams:

T1: a simple chain,

T2: a diagram with a double edge,

T3: a diagram with branching.



Step 8

Claim: The admissible diagram of type T1 corresponds to the
Dynkin diagram An, where n ≥ 1.



Step 9
Claim: The admissible diagrams of type T2 are F4, Bn, and Cn.

Define u =
∑p

i=1 i · ui . Since 2 〈ui , ui+1〉 = −1 for 1 ≤ i ≤ p − 1,

〈u, u〉 =

p∑
i=1

i2 〈ui , ui 〉+
∑
i<j

ij · 2 〈ui , uj〉 =

p∑
i=1

i2 −
p−1∑
i=1

i(i + 1)

= p2 −
p−1∑
i=1

i = p2 − p(p − 1)

2
=

p(p + 1)

2
.

Similarly, v =
∑q

j=1 j · vj and 〈v , v〉 = q(q + 1)/2. From

〈u, v〉 = pq 〈up, vq〉 and 4 〈up, vq〉2 = 2 we get 〈u, v〉2 = p2q2/2.
From Cauchy-Schwarz inequality 〈u, v〉2 < 〈u, u〉 〈v , v〉 we get

p2q2

2
<

p(p + 1)

2
· q(q + 1)

2
.
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Step 10 (continued)

Since p, q ∈ Z+, we get 2pq < (p + 1)(q + 1) or simply
(p − 1)(q − 1) < 2.

p = q = 2

p = 1 and q is arbitrary (or vice versa)
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Step 10

Claim: The admissible diagrams of type T3 are Dn, E6, E7, E8.

Define u =
∑p−1

i=1 i · ui , v =
∑q−1

j=1 j · vj , and w =
∑r−1

k=1 k ·wk . Let
u′, v ′, and w ′ be the corresponding unit vectors. Then

1 = 〈c , c〉 >
〈
c , u′

〉2
+
〈
c , v ′

〉2
+
〈
c ,w ′

〉2
.

Since 〈c , ui 〉2 = 0 unless i = p − 1 and 4 〈c , up−1〉2 = 1, we have

〈c , u〉2 =

p−1∑
i=1

i2 〈c, ui 〉2 = (p − 1)2 〈c , up−1〉2 =
(p − 1)2

4
.

We already know that 〈u, u〉 = p(p − 1)/2, therefore

〈
c , u′

〉2
=
〈c , u〉2

〈u, u〉
=

(p − 1)2

4
· 2

p(p − 1)
=

p − 1

2p
=

1

2

(
1− 1

p

)
.
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Step 10 (Continued)

If we do the same for v and w , we get
2 > (1− 1/p) + (1− 1/q) + (1− 1/r) or simply

1

p
+

1

q
+

1

r
> 1, p, q, r ≥ 2.

We can assume that p ≥ q ≥ r ≥ 2. There is no solution with
r ≥ 3, since then the sum can not exceed 1. Therefore we have to
take r = 2. If we take q = 2 as well, then any p suits, but for
q = 3 we have 1/q + 1/r = 5/6 and we can take only p < 6. There
are no solutions with q ≥ 4, because then the sum is at most 1.

p q r Dynkin diagram

any 2 2 Dn

3 3 2 E6

4 3 2 E7

5 3 2 E8
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q = 3 we have 1/q + 1/r = 5/6 and we can take only p < 6. There
are no solutions with q ≥ 4, because then the sum is at most 1.

p q r Dynkin diagram

any 2 2 Dn

3 3 2 E6

4 3 2 E7

5 3 2 E8



Step 10 (Continued)

If we do the same for v and w , we get
2 > (1− 1/p) + (1− 1/q) + (1− 1/r) or simply

1

p
+

1

q
+

1

r
> 1, p, q, r ≥ 2.

We can assume that p ≥ q ≥ r ≥ 2. There is no solution with
r ≥ 3, since then the sum can not exceed 1. Therefore we have to
take r = 2. If we take q = 2 as well, then any p suits, but for
q = 3 we have 1/q + 1/r = 5/6 and we can take only p < 6. There
are no solutions with q ≥ 4, because then the sum is at most 1.

p q r Dynkin diagram

any 2 2 Dn

3 3 2 E6

4 3 2 E7

5 3 2 E8



End of proof

Q.E.D.

Theorem
For each Dynkin diagram we have found there indeed is an
irreducible root system having the given diagram.
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